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ABSTRACT: An artificial neural network model is estab-
lished for predicting the fiber diameter of melt blown non-
woven fabrics from the processing parameters. An attempt
is made to study the effect of the number of hidden layers
and hidden layer neurons to minimize the prediction error.
The artificial neural network with three hidden layers (5, 2,
and 3 neurons in the first, second, and third hidden layer,
respectively) yields the minimum prediction error and thus
is determined as the preferred network. The square of the
correlation coefficient of measured and predicted fiber di-

ameters shows the good performance of the model. Using
the established ANN model, computer simulations of the
effects of the processing parameters on the fiber diameter are
carried out. The results show great promise for this research
in the field of computer assisted design of melt blowing
technology. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99:
424–429, 2006
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INTRODUCTION

The melt blowing process is characterized by the ca-
pability of producing nonwoven fabrics with microfi-
ber structure. In our previous article, the physics
model of polymer air drawing in the melt blowing
process was established for predicting the fiber diam-
eter.1–3 The predicted fiber diameters showed good
agreement with the experimental results.2,3

As a nonlinear problem, the fiber diameters can also
be predicted by an alternative modeling method, that
is, by using the empirical model, which includes a
statistical regression model, an artificial neural net-
work (ANN) model, and so forth. ANN models have
been shown to provide good approximations in the
presence of noisy data and a smaller number of exper-
imental points, and the assumptions under which
ANN models work are less strict than those for regres-
sion models.4 Therefore, over the past decades, ANNs
have been used for modeling various textile nonlinear
problems.5–8 However, the applications of ANN for
predicting the fiber diameter of nonwoven fabrics are
very scanty. In this article, an ANN model will be
established for predicting the fiber diameter of melt
blown nonwoven fabrics. The effects of the number of
hidden layers and hidden layer neurons will be inves-
tigated to obtain the optimum network structure. The
effects of the processing parameters on the fiber diam-

eter will also be studied using the established ANN
model.

EXPERIMENTAL

Experiments are carried out on the melt blowing non-
woven equipment of Donghua University. It is known
that fiber diameters of melt blown nonwovens will be
influenced by both the processing parameters and the
die parameters. However, it is difficult to change the
die parameters in our present experiments because
dies can hardly be fabricated at the university. There-
fore, only the processing parameters are considered in
this investigation; in the meantime, the die parameters
are fixed as follows: die width � 0.7 mm, die length
� 200 mm, slot width � 0.2 mm, head width � 0.5
mm, angle between the slot and spinneret axis � 30°,
and spinneret diameter � 0.3 mm. The polymer used
is polypropylene with the melt flow index of 54. The
processing parameters concerned are the polymer
flow rate: 0.018, 0.035, and 0.070 g/s; initial polymer
temperature: 230, 260, and 290°C; initial air velocity:
78, 168, and 235 m/s; and initial air temperature: 280,
310, and 340°C. A group of fundamental parameters is
set up, which are the polymer flow rate of 0.035 g/s,
the initial polymer temperature of 260°C, the initial air
velocity of 168 cm/s, and the initial air temperature of
310°C. When one processing parameter varies, the
other three are kept to the fundamental values. The
experimental program is shown in Table I.

The image analysis method is employed to measure
the fiber diameter. The images of nonwoven samples
are acquired by the QUESTER three-dimensional
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video frequency microscope and then processed by
the image analysis software named Image-Pro Plus to
measure the fiber diameter. Further details about the
fiber diameter testing can be found in another of our
articles.3

ARTIFICIAL NEURAL NETWORK MODELING

An artificial neural network is an information-process-
ing system where processing occurs at many simple
elements called neurons organized in layers and
where signals are passed between neurons over con-
nection links. Each connection link has an associated
weight that multiplies the signal transmitted, and each
neuron applies a transfer function to its net input (sum
of weighted input signals) to determine its output
signal. Figure 1 shows the structure of a multi-layer
ANN. This ANN has one input layer with k neurons to

process the k independent variables; n � 1 hidden
layers with m, p, q, . . . neurons, respectively; and one
output layer with r neurons to provide the r responses.
The weights of the first hidden layer modify the in-
formation transmitted from the input layer to the first
hidden layer; that of the second, the information trans-
mitted from the first hidden layer to the second hid-
den layer; and the like. The last hidden layer’s weights
modify the information transmitted from the last hid-
den layer to the output layer. The mathematical ex-
pression of the ANN model with one input layer, n
� 1 hidden layers, and one output layer is given by

Ŷ � ��Ŵn
T�n�1�Ŵn�1

T �n�2
. . .�Ŵ3

T�2�Ŵ2
T�1�Ŵ1X � b̂1�

� b̂2� � b̂3� � · · ·b̂n�1� � b̂n� (1)

where Ŷi
T is the vector of predicted responses; X is the

vector of inputs; Ŵ1 is a matrix containing the weights

TABLE I
Experimental Program

Testing number
Polymer flow

rate (g/s)
Initial polymer

temperature (°C)
Initial air

velocity (m/s)
Initial air

temperature (°C)

1 0.035 260 168 310
2 0.018 260 168 310
3 0.070 260 168 310
4 0.035 230 168 310
5 0.035 290 168 310
6 0.035 260 78 310
7 0.035 260 235 310
8 0.035 260 168 280
9 0.035 260 168 340

Figure 1 Structure of a multi-layer artificial neural network.
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on the connection links between the input layer and
the first hidden layer; Ŵi

T (i � 2, 3,. . . , n � 1) is the
transpose of Ŵi, which is a matrix containing weights
for the links between the i-1th hidden layer and the ith
hidden layer; Ŵn

T is the transpose of Ŵn
I , which is a

matrix containing weights for the links between the
last hidden layer and the output layer; b̂i (i � 1, 2,. . .
, n � 1) and b̂n are vectors containing a special type of
weights, called biases, that modify the net input for
the ith hidden layers and output layer, respectively; �i

is the transfer function of the neurons of the ith hidden
layer; and � is the transfer function of the neurons in
the output layer. Obtaining the weights in Ŵi and b̂i (i
� 1, 2,. . . , n) is commonly done with the error back
propagation algorithm, which is in essence similar to a
least squares reduction. The neurons in the hidden
layer usually use a hyperbolic tangent function as the
transfer function (eq. (2)), and the neurons in the out-
put layer use a pure linear function (eq. (3)).4

��x� �
ex � e�x

ex � e�x (2)

��x� � x (3)

A feed forward artificial neural network is created in
this research. Inputs of the ANN are the polymer flow
rate, initial polymer temperature, initial air velocity,
and initial air temperature, while the output is the
fiber diameter. The transfer functions of the hidden
layer and output layer neurons are the hyperbolic
tangent function and pure linear function, respec-
tively. The ANN is trained with the help of the error
back propagation algorithm using the Matlab Neural
Network Toolbox. The training function used is
“trainlm,” which is based on the Levenberg–Mar-
quardt optimization theory because the neural net-
work converges much faster than by using other train-
ing functions. Ninety nonwoven samples are divided
into a training set and a testing set, with 60 and 30
samples, respectively.

A key to successfully fit the ANN is to keep a testing
set to test the prediction capabilities of the model.
ANN models that are accurate to a high degree in-
crease the confidence of an optimization procedure.
The prediction accuracy of an ANN model is related to
the type and structure of the ANN. To minimize pre-
diction error, an attempt is made to study the effect of
the number of the hidden layers and hidden layer
neurons. The ANN model is designed up to three
hidden layers. To obtain a stable artificial neural net-
work, the total number of network weights and biases
cannot exceed the number of training samples. Ac-
cording to this principle, the number of hidden layer
neurons can be determined as follows. The one hidden
layer ANN model has 2 to 9 neurons in the hidden

TABLE II
Average and Maximum Prediction Errors of Different

ANN Structures

No. ANN structure Average error Variation coefficient

1 4-5-3-3-1 2.7735 0.8828
2 4-5-3-2-1 2.7778 0.7838
3 4-5-2-3-1 2.7999 0.7252
4 4-5-2-2-1 2.7484 0.7503
5 4-4-4-3-1 2.7016 0.7676
6 4-4-4-2-1 3.0098 0.7756
7 4-4-3-4-1 2.8398 0.7850
8 4-4-3-3-1 2.8527 0.7864
9 4-4-3-2-1 2.8684 0.7816

10 4-4-2-4-1 3.0755 0.7790
11 4-4-2-3-1 3.1476 0.8532
12 4-4-2-2-1 3.2615 0.9122
13 4-3-5-3-1 3.0848 0.7601
14 4-3-5-2-1 2.7861 0.7754
15 4-3-4-4-1 3.1072 0.8121
16 4-3-4-3-1 2.7871 0.7703
17 4-3-4-2-1 2.9987 0.8062
18 4-3-3-5-1 2.7829 0.8804
19 4-3-3-4-1 3.2067 0.7742
20 4-3-3-3-1 2.7772 0.7997
21 4-3-3-2-1 3.0749 0.7921
22 4-3-2-5-1 2.7792 0.8000
23 4-3-2-4-1 3.2129 0.8467
24 4-3-2-3-1 2.8819 0.8271
25 4-3-2-2-1 3.1312 0.7542
26 4-2-5-3-1 2.9320 0.8265
27 4-2-5-2-1 2.7859 0.7771
28 4-2-4-4-1 2.9840 0.7807
29 4-2-4-3-1 3.0065 0.7739
30 4-2-4-2-1 2.7709 0.7934
31 4-2-3-5-1 3.0473 0.9145
32 4-2-3-4-1 3.2583 0.8265
33 4-2-3-3-1 3.2641 0.7806
34 4-2-3-2-1 2.8853 0.7533
35 4-2-2-5-1 3.0219 0.9776
36 4-2-2-4-1 3.0496 0.9164
37 4-2-2-3-1 2.7750 0.7674
38 4-2-2-2-1 2.7647 0.8791
39 4-5-4-1 2.9994 0.7723
40 4-5-3-1 3.0989 0.8541
41 4-5-2-1 2.9286 0.8157
42 4-4-5-1 3.1505 0.7745
43 4-4-4-1 2.8129 0.7728
44 4-4-3-1 2.7828 0.7787
45 4-4-2-1 2.8428 0.7749
46 4-3-5-1 3.0430 0.7644
47 4-3-4-1 3.0660 0.7958
48 4-3-3-1 2.7731 0.7648
49 4-3-2-1 2.7680 0.7771
50 4-2-5-1 2.7837 0.7753
51 4-2-4-1 3.0312 0.7719
52 4-2-3-1 2.8179 0.7724
53 4-2-2-1 3.1305 0.7527
54 4-9-1 2.8816 0.8215
55 4-8-1 2.8613 0.7841
56 4-7-1 2.8075 0.7991
57 4-6-1 2.7589 0.7750
58 4-5-1 2.9020 0.7730
59 4-4-1 3.1418 0.7747
60 4-3-1 2.8842 0.7800
61 4-2-1 3.4412 0.9475
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layer. The ANN model with two hidden layers con-
tains 2 to 5 neurons in each hidden layer. And the
ANN model with three hidden layers can only be 2 to
5 neurons in each hidden layer.

RESULTS AND DISCUSSION

Table II gives the average value and variation coeffi-
cient of prediction errors of different ANN structures.
The format of the ANN structure in the second col-
umn of Table II is expressed as the number of neurons
in the input layer, then the number of neurons in the
first hidden layer, number of neurons in the second
hidden layer, number of neurons in the third hidden
layer, and number of neurons in the output layer, in
turn. For example, 4–5-3–3-1 means that there are 4, 5,
3, 3, and 1 neurons in the input, first, second, and third
hidden layers and output layer, respectively. The pre-
diction errors of the ANN model with three, two, and
one hidden layers are listed in the upper, middle, and
lower part of Table II, respectively. It can be found
from Table II that the average value and variation
coefficient of prediction error reaches the minimum
(2.7999% and 0.7252) when the ANN structure is 4–5-
2–3-1. Table III shows the weights and biases of the
ANN model, which is superior to other network struc-
tures in prediction error. Figure 2 shows the correla-
tion of measured and predicted fiber diameters. The
square of correlation coefficient is 0.9424, which con-
firms the effectiveness of the established ANN model.

With the help of the established ANN model, not
only the fiber diameter can be predicted, but also

computer simulations of the effects of the processing
parameters on the fiber diameter can be carried out.

Figure 3 shows the effects of the polymer flow rate
on the fiber diameter. As expected, lower polymer
flow rates produce finer fibers. When the polymer
flow rate is 0.018 g/s, the final fiber diameter is 53.6%
finer than when the rate is 0.070 g/s.

Figure 4 illustrates how changes of initial polymer
temperature cause changes of the rate of fiber attenu-
ation. Observe that the higher the initial polymer tem-
peratures, the finer the fibers will be. When the initial
polymer temperature increases to 290°C, the final fiber

TABLE III
Weights and Biases of the ANN

Weights from input layer to first hidden layer
Ŵ1

Biases for first hidden layer
b̂1

�0.4264 0.2671 1.9024 �0.9482 2.1784
�0.6367 �1.2872 1.7320 �0.9719 �0.3061

2.3455 �1.2476 �2.3674 �1.8980 0.5268
�0.9351 1.4787 �2.8977 1.5969 �2.1249
�0.0292 2.1173 �2.7261 0.0117 0.9047

Weights from first hidden layer to second hidden layer
Ŵ2

Biases for second hidden layer
b̂2

1.2947 2.1154 �1.3229
1.5257 �1.4402 2.8893

�4.4797 2.7253
�3.7432 0.4242

1.6276 �0.5227
Weights from second hidden layer to third hidden layer
Ŵ3

Biases for third hidden layer
b̂3

�2.5500 �0.2358 3.5658 1.5984
1.4302 �3.0965 0.5305 �0.0353

3.5416
Weights from third hidden layer to output layer
Ŵ4

Bias for output layer
b̂4

1.4096 1.7669
1.9083

�0.8973

Figure 2 Correlation of measured and predicted fiber di-
ameters.
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diameter is 23.4% finer than when the temperature is
230°C.

Figure 5 gives the effect of the initial air velocity on
the fiber diameter. It can be seen that higher initial air
velocities will cause the fibers to be attenuated finer.
The final fiber diameter corresponding to initial air
velocity of 235 m/s is 55.1% finer than that corre-
sponding to the velocity of 78 m/s.

Figure 6 shows an insignificant effect of the initial
air temperature on the fiber diameter. When the
initial air temperature increases from 280 to 340°C,
the fiber diameter only decreases about 4.8%. There-
fore, high initial air temperature contributes little to
the polymer drawing, which gives us insights on
reducing the energy consumption of the melt blow-
ing process.

In addition, the established ANN model can be used
for compromising the processing parameters accord-

ing to the required fiber diameter to obtain the optimal
combination of the parameters and make the process-
ing have a better cost-effectiveness ratio.

CONCLUSIONS

An artificial neural network model is established for
predicting the fiber diameter of melt blown nonwoven
fabrics from the processing parameters. An attempt is
made to study the effect of the number of hidden
layers and hidden layer neurons to minimize the pre-
diction error. The artificial neural network with three
hidden layers (5, 2, and 3 neurons in the first, second,
and third hidden layers, respectively) yields the min-
imum prediction error and, thus, is determined as the
preferred network. The square of the correlation coef-
ficient of measured and predicted fiber diameters

Figure 3 Effect of polymer flow rate on fiber diameter.

Figure 4 Effect of initial polymer temperature on fiber
diameter.

Figure 5 Effect of initial air velocity on fiber diameter.

Figure 6 Effect of initial air temperature on fiber diameter.
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shows the good performance of the model. Using the
established ANN model, computer simulations of the
effects of processing parameters on the fiber diameter
are carried out. The results show great promise for this
research in the field of computer assisted design of
melt blowing technology.
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